Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells.

نویسندگان

  • Y Dai
  • C Yu
  • V Singh
  • L Tang
  • Z Wang
  • R McInistry
  • P Dent
  • S Grant
چکیده

Interactions between the checkpoint abrogator UCN-01 and several pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK pathway have been examined in a variety of human leukemia cell lines. Exposure of U937 monocytic leukemia cells to a marginally toxic concentration of UCN-01 (e.g., 150 nM) for 18 h resulted in phosphorylation/activation of p42/44 MAPK. Coadministration of the MEK inhibitor PD184352 (10 microM) blocked UCN-01-induced MAPK activation and was accompanied by marked mitochondrial damage (e.g., cytochrome c release and loss of DeltaPsi(m)), caspase activation, DNA fragmentation, and apoptosis. Similar interactions were noted in the case of other MEK inhibitors (e.g., PD98059; U0126) as well as in multiple other leukemia cell types (e.g., HL-60, Jurkat, CCRF-CEM, and Raji). Coadministration of PD184352 and UCN-01 resulted in reduced binding of the cdc25C phosphatase to 14-3-3 proteins, enhanced dephosphorylation/activation of p34(cdc2), and diminished phosphorylation of cyclic AMP-responsive element binding protein. The ability of UCN-01, when combined with PD184352, to antagonize cdc25C/14-3-3 protein binding, promote dephosphorylation of p34(cdc2), and potentiate apoptosis was mimicked by the ataxia telangectasia mutation inhibitor caffeine. In contrast, cotreatment of cells with UCN-01 and PD184352 did not substantially increase c-Jun-NH(2)-terminal kinase activation nor did it alter expression of Bcl-2, Bcl-x(L), Bax, or X-inhibitor of apoptosis. However, coexposure of U937 cells to UCN-01 and PD184352 induced a marked increase in p38 MAPK activation. Moreover, SB203580, which inhibits multiple kinases including p38 MAPK, partially antagonized cell death. Lastly, although UCN-01 +/- PD184352 did not induce p21(CIP1), stable expression of a p21(CIP1) antisense construct significantly increased susceptibility to this drug combination. Together, these findings indicate that exposure of leukemic cells to UCN-01 leads to activation of the MAPK cascade and that interruption of this process by MEK inhibition triggers perturbations in several signaling and cell cycle regulatory pathways that culminate in mitochondrial injury, caspase activation, and apoptosis. They also raise the possibility that disrupting multiple signaling pathways, e.g., by combining UCN-01 with MEK inhibitors, may represent a novel antileukemic strategy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK.

Interactions between the Chk1 inhibitor UCN-01 and the farnesyltransferase inhibitor L744832 were examined in human leukemia cells. Combined exposure of U937 cells to subtoxic concentrations of UCN-01 and L744832 resulted in a dramatic increase in mitochondrial dysfunction, apoptosis, and loss of clonogenicity. Similar interactions were noted in other leukemia cells (HL-60, Raji, Jurkat) and pr...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells.

Interactions between the kinase inhibitor STI571 and pharmacological antagonists of the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) cascade have been examined in human myeloid leukemia cells (K562 and LAMA 84) that express the Bcr-Abl kinase. Exposure of K562 cells to concentrations of STI571 that minimally induced apoptos...

متن کامل

Iranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat

Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...

متن کامل

Sequence-dependent potentiation of paclitaxel-mediated apoptosis in human leukemia cells by inhibitors of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathway.

Effects of inhibitors of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase (MEK/MAPK) cascade have been examined in relation to paclitaxel-induced apoptosis in human monocytic leukemia cells (U937). Cells treated with paclitaxel (250 nm; 6 h) followed by PD98059 [corrected] exhibited a significant increase in mitochondrial dysfunction (e.g., cytochrome c release), cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 61 13  شماره 

صفحات  -

تاریخ انتشار 2001